Физические свойства спинномозговой жидкости

Спинномозговая жидкость — прозрачная, бесцветная. При описании физических свойств обращают внимание на цвет, прозрачность, наличие осадка и фибринозной плен­ки, относительную плотность.

Цвет. В норме бесцветна как вода. При заболеваниях может быть окрашена в сероватый, красный или желтый цвет.

Примесь крови придает спинномозговой жидкости красный цвет. Кровь может появиться в результате кровоизлияний при попадании в субарахноидальное про­странство, во время пункции из поврежденных кровенос­ных сосудов. Если примесь крови незначительна, спинно­мозговая жидкость окрашивается в серовато-желтоватый цвет, если крови много — в ярко-красный. Для того чтобы отличить случайную примесь крови от кровоизлияния, спинномозговую жидкость центрифугируют. Эритроциты, попавшие в нее во время пункции, оседают, надосадочная жидкость остается бесцветной. Если после центрифугиро­вания цвет остается красноватым или буроватым, то это служит признаком кровоизлияния; цвет обусловлен нали­чием кровяного пигмента гемоглобина.

При давних кровоизлияниях гемоглобин распадается с образованием пигментов билирубина и биливердина, кото­рые придают спинномозговой жидкости различные оттен­ки желтого цвета от зеленовато-желтого до янтарного. Желтая окраска может встречаться при некоторых забо­леваниях центральной нервной системы. Это явление носит название ксантохромии.

Прозрачность. В норме прозрачна. Помутнение зависит от увеличения содержания клеточных элементов — эритроцитов, лейкоцитов, эпителиальных клеток или от наличия большого количества микроорганизмов.

Чтобы заметить незначительные изменения цвета и прозрачности, спинномозговую жидкость сравнивают с дистиллированной водой в пробирках одинакового диамет­ра.

Осадок. В норме отсутствует. При наличии мутности форменные элементы могут выпадать в осадок. Эритроци­ты образуют осадок красного цвета, лейкоциты — зеленовато-желтого. Микроорганизмы осадка не дают.

Фибринозная пленка. Появляется при стоянии при содержании большого количества грубодисперсных бел­ков. Образование пленки часто наблюдается при туберку­лезном менингите. Она представляет собой полупрозрач­ное беловато-сероватое сплетение нитей фибрина, спуска­ющееся в виде конуса от поверхности жидкости ко дну пробирки. Для получения фибринозной пленки спинномоз­говую жидкость берут в отдельную пробирку, которую нужно предохранять от сотрясений.

Относительная плотность. В норме равна 1,006—1,007. Определяется ареометром малого размера. В большинстве случаев это определение произвести трудно из-за малого количества получаемого материала.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9708 — | 7429 — или читать все.

Физические свойства ликвора

Цвет.Нормальная цереброспинальная жидкость бесцветна. При ряде патологических состояний (эпидемический энцефалит, туберкулезный менингит, сухотка спинного мозга) она остается бесцветной. Определение слабой окраски ликвора производят путем сравнения ее с дистиллированной водой, налитой в про­бирку такого же диаметра, как и пробирка с ликвором.

Сероватый, серо-зеленый, зеленоватый цвет цереброспиналь­ной жидкости обусловлен большим содержанием в ней лейкоцитов наблюдается при менингитах различного происхождения, при абсцессах мозга. Красный цвет обусловлен примесью крови (эритрохромия) и может наблюдаться при свежих субарахноидальных кровоизли­яниях, геморрагических инсультах (при наличии связи очага кровоизлияния с ликворными путями), травме мозга. Иногда появление красного цвета ликвора может быть вызвано случай­ной примесью крови при неудачно проведенной пункции. Чтобы решить вопрос о природе эритроцитов, можно использовать пробу с двумя или несколькими пробирками. Если примесь кро­ви является результатом пункции, то 2-я и последующие порции ликвора, взятого в разные пробирки, не содержат эритроцитов или содержат их в значительно меньшем количестве по сравне­нию с 1-ой порцией. При субарахноидальном кровоизлиянии все порции ликвора содержат примерно одинаковое количество эри­троцитов. Решить вопрос о происхождении крови в цереброспи­нальной жидкости помогают повторные пункции — в случаях кровоизлияний при последующих пункциях появляется ксантохромия. Желтый цвет (ксантохромия) может быть связан с при­сутствием продуктов превращения гемоглобина (билирубин, биливердин). Иногда ксантохромия может быть ре­зультатом случайной примеси эритроцитов при производстве пункции. Для решения этого вопроса жидкость центрифугируют. В случаях, когда ксантохромия была обусловлена примесью эрит­роцитов, после центрифугирования жидкость становится бесцвет­ной, а эритроциты выпадают в осадок.

В клинической практике важно отличать застойную ксантохромию от геморрагической. Застойная возникает в результате замедления тока крови в сосудах мозга, когда в связи с наруше­нием проницаемости стенок сосудов окрашенная в желтый цвет плазма крови поступает в ликвор. Геморрагическая ксантохро­мия обусловливается попаданием в ликворные пути эритроцитов крови, гемоглобин которых, превращаясь в билирубин, и дает желтое окрашивание ликвора. Отличительной чертой является и то, что застойная ксантохромия, проявляющаяся обычно в результате блокирования субарахноидальных пространств, обычно бывает стабильна в своей интенсивности и сопровождается, как прави­ло, выраженной протеинорахией, в то время как геморрагичес­кая ксантохромия при отсутствии продолжающегося кровотече­ния исчезает через 10—14 суток после попадания крови в суб­арахноидальное пространство и не сопровождается столь резко выраженным увеличением содержания белка в ликворе. Застой­ная ксантохромия наиболее часто встречается при опухолях ЦНС, блокирующих ликворные пространства. Как физиологиче ский фактор ксантохромия встречается у недоношенных ново­рожденных. Это явление объясняется повышенной проницаемо­стью гематоэнцефалического барьера к билирубину. После 7 су­ток пигмент исчезает и жидкость становится бесцветной.

Прозрачность.Ликвор в норме прозрачный. Мутность опре­деляют так же, как цвет ликвора, но обе пробирки, встряхнув, помещают на черном фоне. В зависимости от степени помутне­ния различают слабую, умеренную и большую мутность. Она мо­жет быть обусловлена присутствием большого количества кле­точных элементов (лейкоцитов, эритроцитов) или большого ко­личества микроорганизмов. Мутность, обусловленная формен­ными элементами крови, после центрифугирования исчезает, а связанная с наличием микроорганизмов — остается.

Опалесценцияликвора, появление которой связано в основ­ном с большим содержанием грубодисперсных белков и фибри­ногена, может наблюдаться при туберкулезном менингите, си­филитическом менингите, тромбозе синусов головного мозга. При большом содержании фибриногена образуется пленка в виде желеобразного сгустка илликвор свертывается. Появление пленки фибрина в цереброспинальной жидкости отмечается при туберкулезном менингите, в ней иногда обнаруживают микобак­терии туберкулеза. Быстрая коагуляция ликвора наблюдается при застойных явлениях в ликворных путях.

Запах.Нормальная цереброспинальная жидкость при боль­шинстве патологических процессов не имеет запаха. При уреми­ческой коме ликвор приобретает запах аммиака, при диабетиче­ской — запах ацетона.

Читайте также:  Подстричь собаку пуделя в ростове

Относительная плотностьнормальной цереброспинальной жидкости, полученной при люмбальной пункции, равна 1,006— 1,008. Относительная плотность определяется с помощью арео­метров малого размера. Повышение относительной плотности наблюдается при воспалении мозговых оболочек, травмах голов­ного мозга. Снижение относительной плотности — при гипер­продукции ликвора (гидроцефалия). Среда ликвора в норме сла­бощелочная — рН = 7,35—7,4; при патологических состояниях существенно не изменяется, определяется с помощью универ­сальных индикаторных бумажек.

Микроскопическое исследование цереброспинальной жидко­сти предусматривает определение цитоза,т. е. количества лей­коцитов в определенном объеме, при увеличенном содержании клеточных элементов дифференциацию их состава.

Нормальное содержание лейкоцитов в цереброспинальной жидкости следующее: в жидкости из желудочков мозга и боль­шой цистерны 0—I х 10 6 /л, в люмбальной жидкости 0—5 х 10 6 /л.

У детей цитоз выше, чем у взрослых, и с возрастом посте­пенно падает. У новорожденных до 20—10 б /л, у детей до года 14—15 х 10 6 /л, затем эта величина постепенно падает (приб­лизительно на 1 клетку за год жизни) и к 10 годам составляет 4— 5 х 10 6 /л.

Клиническое значение.Повышенный цитоз (плеоцитоз) на­блюдается при воспалительных поражениях мозговых оболочек различной этиологии и органических поражениях вещества мозга (опухоль, сифилис, абсцесс и др.), а также при травмах, крово­излияниях, цистицеркозе и др.

Исследование окрашенных препаратов

Морфология клеточных элементов

В окрашенных препаратах ликвора лимфоцитывыглядят в виде клеток округлой формы с круглым гиперхромным ядром, занимающим почти всю клетку. Количество их уве­личивается при опухолях ЦНС, при серозных менингитах, ви­русных энцефалитах, нейросифилисе и др.

Нейтрофилъные лейкоцитыликвора по виду идентичны таким же клеткам периферической крови Наличие неизмененных нейтрофильных лейкоцитов свидетельствует об остром воспалительном процессе при бакте­риальных менингитах, после оперативных вмешательств, при попадании свежей крови в ликвор.

Эозинофильные лейкоцитыпо своим морфологическим осо­бенностям не отличаются от таких же клеток периферической крови, имеют ту же величину и оранжево-красную, четкую, до­вольно крупную, равномерную зернистость в цитоплазме. В большом коли­честве они встречаются при паразитарных заболеваниях нервной системы (цистицеркозе, эхинококкозе).

В окрашенных препаратах плазматическиеклетки имеют округлую форму и круглые гиперхромные глыбчатые ядра, рас­положенные эксцентрично, цитоплазма базофильная, размеры клеток от 6 до 12 мкм. В цереброспинальной жидкости плазма­тические клетки встречаются только в патологических случаях при длительно текущих воспалительных процессах в головном, спинном мозге и в мозговых оболочках (рассеянном склерозе, нейросифилисе, туберкулезном менингите, в послеоперацион­ном периоде при вялотекущем процессе заживления).

ГистиоцитыВ нормальной цереброспинальной жидкости гистиоциты встречаются редко, в виде единичных экземпляров. При выра­женной длительно текущей воспалительной реакции мозговых оболочек обнаруживается большое количество гистиоцитов. По­сле операций на ЦНС гистиоциты указывают на активную тка­невую реакцию, нормальные процессы заживления.

Макрофагимогут иметь ядра различной формы, чаще расположеные эксцентрично, цитоплазма вакуолизирована, содержит включения. Величина клеток от 7 до 17 мкм, иногда 20—30 мкм. У здорового человека макрофаги в ликворе не встречаются.

Липофаги— это макрофаги, содержащие в цитоплазме капли жира. Обнаруживаются липофаги обычно при опухолях и в жидкости из мозговых кист различного происхождения.

Клетки паутинной оболочкив ликворе встречаются редко. Это крупные неправильной формы клетки с небольшим центрально расположенным круглым ядром. Ядро окрашивается гипохром- но, цитоплазма серовато-голубого цвета, часто разрушена. Еди­ничные клетки не указывают на патологию, так как они высти­лают подпаутинное пространство и, слущиваясь, попадают в ли­квор. Увеличение количества клеток паутинной оболочки наб­людается при арахноидитах, цистицеркозе мозга.

Опухолевые клеткив цереброспинальную жидкость попадают при прорастании опухоли в ликворные пространства.

ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ЛИКВОРА

Белки— важная составная часть цереброспинальной жидко­сти. Их количественное и качественное отклонение от нормы указывает на органическое поражение ЦНС. Имеется значитель­ное расхождение в содержании белка на различном уровне ликворной системы. Люмбальный ликвор содержит до 0,22—0,33 г/л; ликвор желудочков мозга — 0,12—0,2 г/л; большой цистерны — 0,1—0,22 г/л; его уровень у новорожденных более высок — 0,6— 0,9 г/л, что связано с недостаточным развитием гематоэнцефалического барьера. При опухолях, воспалении мозговых оболочек, травмах, из­менениях гемодинамики в головном и спинном мозгу, наруше­ниях проницаемости стенок капилляров содержание белка увеличивается (протеинорахия). Наиболее характерно увеличение количества белка для экстрамедулярно расположенных опухолей спинного мозга. Количество белка при них может быть так ве­лико, что цереброспинальная жидкость сразу же после пункции выделяет желеобразный сгусток фибрина. Цитоз при этом может оставаться в норме или слегка повышаться, тогда говорят о белково-клеточной диссоциации (синдром Нонне — Фроан). Уве­личение содержания белка в ликворе при опухолях объясняется венозным застоем в сочетании с нарушением циркуляции жид­кости. Кроме того, в ликвор поступают продукты белкового об­мена самой опухоли и продукты белкового распада из очагов кровоизлияний в ткани опухоли.

Увеличение содержания белка в ликворе наблюдается при травмах ЦНС, поражении гематоэнцефалического барьера после операций на центральной нервной системе. Высота протеинорахии зависит от остроты воспалительного процесса и степени во­влечения в него мозговых оболочек. Значительное повышение уровня белка в ликворе характерно для менингококковых и гнойных менингитов, субарахноидальных кровоизлияний раз­личной этиологии (аневризма, инсульт), различных поражениях нервной ткани головного и спинного мозга (энцефалиты, по­лиомиелиты, сифилис ЦНС, переломы позвоночника со смеще­нием в сочетании с блоком спинно-мозгового канала).

Большое клиническое значение имеет установление соотно­шения белковых фракций. В норме показатель отношения со­держания глобулинов к уровню альбумина колеблется в пределах 0,2-0,3.

Количество белка в цереброспинальной жидкости определя­ют так же, как и в моче, для этого используют метод Брандберг — Роберте — Стольникова (применяют капельный метод разведения) и фотоэлектроколориметрический метод, основан­ный на образовании преципитата в среде, содержащей сульфосалициловую кислоту и сульфат натрия (унифицированный метод).

Большое значение в диагностике заболеваний нервной сис­темы имеет определение содержания глюкозыв цереброспиналь­ной жидкости. Для этого используют любой из методов, приня­тых для определения глюкозы крови. Жидкость исследуют сразу, так как быстро наступает гликолиз. У здорового человека содер­жание глюкозы в ликворе колеблется в пределах 2,8—3,9 ммоль/л. Источником ее является глюкоза крови. Попадает глюкоза из крови в ликвор не только через сосудистые сплетения, но и че­рез оболочки мозга. При заболеваниях нервной системы содер­жание глюкозы в цереброспинальной жидкости уменьшается или увеличивается без изменения содержания ее в крови. Уровень глюкозы бликворе снижается при остром и подостром серозном менингите (гриппозном, вирусном, токсическом). Резкое сниже­ние концентрации глюкозы наблюдается при туберкулезном ме­нингите. При стрептококковом и менингококковом менингите глюкоза в ликворе может отсутствовать.

Читайте также:  Горные животные россии

Увеличение содержания глюкозы в ликворе при нормальном уровне ее в крови наблюдается при энцефалитах, эпилепсии, те­тании, столбняке. При опухолях уровень глюкозы может и по­вышаться, и понижаться. При сахарном диабете содержание глю­козы повышается и в крови, и в цереброспинальной жидкости.

У здорового человека содержание хлоридовв цереброспи­нальной жидкости варьирует в пределах 120—130 ммоль/л. По­нижение содержания хлоридов в ликворе наблюдается при ме- нингите, особенно туберкулезном, реже при нейросифилисе, бруцеллезе. Повышение содержания хлоридов может быть при уремии, опухолях мозга, рассеянном склерозе, эхинококкозе.

ИССЛЕДОВАНИЕ СПИННОМОЗГОВОЙ ЖИДКОСТИ (ЛИКВОРА)

Ф изиология ликворообразования.

Головной и спинной мозг хорошо защищены плотным костным покровом – черепной коробкой и позвоночником.

К внутренней поверхности костей черепа прилегает плотная фиброзная твёрдая мозговая оболочка, под которой находится паутинная оболочка, покрывающая в виде очень тонкого прозрачного бесструктурного листка, головной мозг. Книзу эта оболочка переходит в паутинную оболочку спинного мозга. Вся поверхность мозга окутана разветвлённой сетью сосудов, заключённых в мягкую мозговую оболочку, покрывающую ткань мозга в глубине борозд, щелей и ямок. Паутинная оболочка переходит с одной возвышенности на другую, образуя различной величины подпаутинные вместилища. Наиболее крупные из них получили название цистерн.

Между паутинной и мягкой оболочкой и находится так называемое подпаутинное (субарахноидальное) пространство. Оно заполнено ликвором и является единым для головного и спинного мозга.

Спинномозговая жидкость (цереброспинальная жидкость, ликвор) циркулирует между оболочками мозга, в его желудочках, цистернах и в спинномозговом канале.

Ликвор образуется в желудочках мозга из плазмы крови благодаря процессам фильтрации, секреции и осмоса. Из желудочков ликвор поступает в цистерны мозга и в субарахноидальное пространство. Затем через кровеносные капилляры всасывается в венозную и частично лимфатическую систему.

За сутки образуется от 400 до 600 мл ликвора. Циркуляция её происходит непрерывно; в субарахноидальных пространствах содержится одновременно 100-150 мл ликвора.

Ликвор – это своеобразная биологическая жидкость, необходимая для функционирования мозга и выполняющая защитную функцию.

Ликвор является средой для обмена веществ между мозгом и кровью, носителем питательных веществ от кровеносных сосудов к нервным клеткам, это место выделения продуктов жизнедеятельности мозговой ткани. Мозг не имеет лимфатической системы, и продукты метаболизма удаляются через капиллярный кровоток.

Ликвор можно рассматривать как растворитель некоторых веществ, которые транспортируются от одного участка мозга к другому, например: из гипоталамуса к гипофизу.

Ликвор необходим для регуляции дыхательной активности и кровообращения. Например: изменение концентрации Ca , K , Mg и других микроэлементов в ликворе приводит к нарушению дыхания, кровяного давления, изменяется частота сердечных сокращений и др.

Физиологическое значение ликвора:

— механическая защита мозга от ударов и сотрясений о кости черепа,

— доставка питательных веществ нервным клеткам,

— экскреция, т.е. выделение некоторых метаболитов мозга,

— служит транспортным средством для гормонов и других веществ,

— поддерживает постоянство окружающей среды мозга (гомеостаз),

— осуществляет функцию специфического иммунобиологического барьера.

Таким образом, ликвор выполняет важную роль в процессах жизнедеятельности мозговой ткани.

Методы извлечения ликвора

Для исследования ликвор получают путём прокола – пункции. Пункцию всегда производит врач в условиях операционной, специальной иглой, которая вводится в подпаутинное пространство.

Прокол делают в строго определённых местах:

1. Между III и IV поясничными позвонками – поясничная (люмбальная) пункция.

2. Между затылочной костью и II шейным позвонком, в большую цистерну мозга – подзатылочная (субокципитальная) или цистерная пункция.

3. В месте сочленения височной, лобной и теменной костей – желудочковая (вентрикулярная) пункция.

Из иглы ликвор вытекает свободно. Её собирают в 2 пробирки, хотя общее количество её чаще всего невелико (не более 10 мл). С полученным материалом следует обращаться очень бережно, так как пункция довольно тяжёлая манипуляция для больного. После прокола он должен находиться на строго постельном режиме в течение 2-3 дней.

Так как ликвор обладает выраженными цитолитическими свойствами, он должен быть доставлен в лабораторию и исследован немедленно после его взятия. При продолжительном его хранении при комнатной температуре происходит разрушение форменных элементов. При охлаждении менингококки и другие возбудители инфекционных заболеваний могут погибнуть. В лаборатории тотчас делают посев на питательные среды и производят бактериоскопические, биохимические и серологические исследования, определяют также физические свойства, цитоз, изучают морфологию клеток.

Исследование состава и свойств ликвора имеет диагностическое значение при заболеваниях ЦНС и мозговых оболочек, таких, как энцефалиты (воспаления головного мозга), менингиты (воспаления твёрдой мозговой оболочки), арахноидиты (воспаления паутинной оболочки), сифилис мозга, опухоли, травмы и другие заболевания.

1. Количество. Количество извлечённого ликвора зависит от цели пункции и состояния больного. Для обычного исследования берут 8-10 мл, у детей 5-7 мл, у грудных детей 2-3 мл ликвора.

2. Цвет. Для определения цвета ликвор сравнивают с дистиллированной водой на белом фоне.

— Нормальный ликвор – бесцветная, прозрачная жидкость, макроскопически трудно отличимая от дистиллированной воды.

— Ксантохромия – кофейно-жёлтый цвет ликвора, его дают продукты распада гемоглобина, освобождённые из лизированных эритроцитов.

В зависимости от механизма возникновения ксантохромии различают:

А) застойную – появляется вследствие застоя крови в мозговых сосудах и изменений проницаемости стенок сосудов, эта ксантохромия сопровождается значительным увеличением белков в ликворе.

Б) геморргагическую – развивается при попадании крови в ликворное пространство, в таких случаях должно пройти определённое время до появления ксантохромии, через 2 –12 часов выявляется оранжевая ксантохромия, через 2-4 дня жёлтая.

Читайте также:  Выкройка костюма для кота своими руками

Ксантохромия может быть также при желтухах (в том числе и у новорождённых) и при субарахноиадальном введении пеницилина.

— Эритроцитрахия (кровавый ликвор) .

А) артефактную – эритроциты попадают в ликвор во время пункции – при этом первая порция кровавая, а остальные нет.

Б) истинную, вызываемую кровоизлияниями в ликворную систему при инсульте, опухолях, травмах, при этом все порции ликвора одинаково окрашены.

— Зеленовато-жёлтый, серо-зелёный, сероватый цвет ликвора обусловлен большим содержанием в ликворе лейкоцитов. Наблюдается при гнойных менингитах и абсцессах мозга.

3. Прозрачность. В норме ликвор прозрачен (для определения прозрачности ликвор сравнивают с дистиллированной водой). Помутнение ликвора от лёгкой опалесценции до выраженной мутности наблюдается при резком увеличении содержания клеточных элементов (эритроцитов, лейкоцитов, микроорганизмов) и повышенном содержании общего белка.

Мутность определяют на чёрном фоне.

Мутность, обусловленная форменные элементами крови, после центрифугирования исчезает, а связанная с наличием микроорганизмов – остаётся.

Степень мутности выражается в 4-х крестной системе:

4. Относительная плотность. Измеряется пикнометром — ареометром малого размера.

Для люмбального ликвора норма — 1,005 — 1,009

Для субокципитального — 1,003 — 1,007

Для вентрикулярного 1,002 — 1,004

Повышается относительная плотность при менингитах, уремии, сахарном диабете, черепно-мозговых травмах.

5. Фибриновая сетка. Для обнаружения фибринозной плёнки ликвор оставляют в пробирке до образования «мешочка».

При воспалении мозговых оболочек вследствие значительного увеличения количества грубодисперсных белков (глобулинов и фибриногена) на поверхности ликвора, если его отстоять, образуется нежная паутинообразная фибриновая сеточка. При большом содержании фибриногена образуется плёнка в виде желеобразного сгустка или ликвор свёртывается.

Фибриновая сетка является важным диагностическим признаком. Наблюдается у больных с гнойным менингитом, туберкулёзным менингитом, опухолями ЦНС, мозговой геморрагией, компрессией и др.

6. Запах. Ликвор в норме не имеет запаха. Запах появляется при некоторых патоогических состояниях:

— При уремической коме – ликвор приобретает запах аммиака.

— При диабетической коме – запах ацетона.

7. рН ликвора . В норме среда слабощелочная – рН = 7,35-7,4.

При патологических состояниях существенно не изменяется, определяется с помощью универсальных индикаторных бумажек.

Микроскопическое исследование ликвора

Определение общего количества клеток ликвора (цитоза)

Определение цитоза следует производить как можно скорее после пункции (в течение 30 минут), так как клетки ликвора очень быстро разрушаются.

В норме ликвор беден клеточными элементами. В 1 мл можно обнаружить 0-3-5 лимфоцитов, поэтому их подсчитывают в счётных камерах большей ёмкости, чем для подсчёта клеток крови (в камере Фукса-Розенталя).

Определение цитоза (клеточного состава)

Принцип: при помощи микроскопа в счётной камере Фукса-Розенталя подсчитывают число лейкоцитов в ликворе после разрушения эритроцитов.

Реактивы: реактив Самсона (30 мл ледяной уксусной кислоты, 2 мл карболовой кислоты, 2 мл спиртового раствора фуксина, доливают дистиллированной водой до 100 мл).

1. Размешать ликвор в пробирке.

2. В меланжер до метки 1 набирают реактив Самсона.

3. До метки 11 набирают ликвор.

Раствор уксусной кислоты гемолизирует возможную примесь эритроцитов, фуксин подкрашивает лейкоциты (ядра клеток окрашиваются в красновато-фиолетовый цвет), карболовая кислота консервирует их.

4. Перемешивают ликвор с реактивом, прокатывая меланжер между ладонями, и оставляют на 15-30 минут для прокрашивания.

5. Первую каплю из меланжера выпускают в фильтровальную бумажку, перемешивают камеру Фукса-Розенталя, которая состоит из 16 больших квадратов, каждый из которых разграфлён на 16 маленьких — всего 256 квадратиков.

6. Считают лейкоциты во всех 256 квадратиков и полученное число делят на 3,2 (объём камеры). Результат соответствует количеству лейкоцитов в 1 мкл ликвора.

Люмбальный ликвор — 7-10 в камере

Цистернальный ликвор — 0-2 в камере

Желудочковый ликвор — 1-3 в камере

Повышенный цитоз — плеоцитоз. Наблюдается при воспалительных поражениях оболочек мозга — менингитах, арахноидитах и органических поражениях вещества мозга (опухоль, сифилис, абсцесс), а также при травмах, кровоизлияниях.

У детей цитоз выше, чем у взрослых.

1. Ликвор центрифугируют 7-10 минут, после надосадочную жидкость сливают.

2. Осадок выливают на предметное стекло, слегка покачивая его для равномерного распределения жидкости на поверхности стекла.

3. Мазок высушивают при комнатной температуре в течение суток.

4. Фиксируют 5 минут в метиловом спирте или 15 минут в этиловом.

5. Красят раствором азур-эозина, разведённого в 5 раз в течение 1 часа.

6. Микроскопируют с иммерсионным маслом.

В норме в ликворе встречаются только лимфоциты.

При патологических состояниях встречаются все виды лейкоцитов, арахноэндотелиальные макрофаги, опухолевые клетки, плазматические клетки, полибласты. Макрофаги появляются после кровоизлияния в ЦНС, при распаде опухоли.

Химическое исследование ликвора

Определение белка в ликворе

Белки – важная составная часть ликвора. Их количественное и качественное отклонение от нормы указывает на органическое поражение ЦНС.

Унифицированный метод определения глобулинов карболовой кислотой.

Принцип: осаждение глобулинов, появление преципитата (мути), при добавлении к насыщенному раствору карболовой кислоты жидкости, содержащей белок.

Реактивы: насыщенный раствор карболовой кислоты (100 г карболовой кислоты растворяют в 1 л воды, встряхивают и оставляют на стуки в термостате при температуре 37 0 С, затем раствор выдерживают 5-6 суток при комнатной температуре). Для постановки реакции используют надосадочную жидкость.

После пребывания при комнатной температуре в течение 7 дней надосадочную жидкость сливают и используют.

На часовое стекло, помещённое на чёрную бумагу, наливают 1 мл реактива и по краю наслаивают 1-2 капли ликвора.

Оценка полученных результатов:

Оценка производится по 4-х крёстной системе:

При положительном результате в месте соприкосновения реактива с ликвором образуется молочно-белое облачко, переходящее в муть от лёгкой опалесценции до хлопьев.

Образование хлопьев (значительное помутнение) ++++, умеренное +++, заметная опалесценция ++, лёгкая опалесценция +, отсутствие помутнения (-).

Унифицированный метод определения глобулинов

Принцип: соли в определённой концентрации избирательно осаждают глобулины.

Реактивы: насыщенный раствор сульфата аммония.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *